

Treatment of perianal Crohn's fistulas: Seton vs. Anti-TNF vs. Surgical closure

Christianne Buskens, Colorectal surgeon, AMC

Up to 30% perianal fistula in Crohn's disease

Decreased QoL

- Pain
- Production
- Abscess

High use of medical resources

High costs

Hellers et al. Gut 1980

Complex fistula (involvement upper 2/3 sphincter):

- Seton drainage
- Anti-TNF
- Surgical closure

Advancement plasty

Ligation intersphincteric tract

6.2.6. ECCO Statement 9G Seton placement after surgical treatment of sepsis is recommended for complex fistulas [EL2]. The timing of removal depends on subsequent therapy.

6.2.10. ECCO Statement 9L

Thiopurines [EL2], infliximab [EL1], or adalimumab [EL2], seton drainage, or a combination of drainage and medical therapy [EL3] should be used as maintenance therapy.

6.3.1. ECCO-ESCP Statement 5A

The indications for surgery aiming to close a fistula-inano in CD include a symptomatic patient, with no concomitant abscess, with medically controlled proctitis, and a preferably anatomically defined fistula tract [EL3]

am C

Seton drainage

- Cheap, prevention of abscesses and recurrent tracts
- Low re-intervention rates (10-20%)
- Fistula will not close with seton in situ: QoL?
- Closure rates after removal?

Studies	No patients	No patients seton + removal	FU months (range)	Fistula closure (%)	Recurrence (%)	Applicability study
Morrison 1989	35	6	120 (ns)	6 (100)	1 (17)	low
Williams 1991	55	22	54 (6-120)	3 (14)	0	low
Scott 1996	59	27	20 (12-35)	23 (85)	4 (15)	low
Takesue 2002	32	9	62 (25-133)	0 (0)	3 (33)	low
Chung 2010	51	32	3 (endpoint)	10 (31)	ns	low

Anti-TNF

- Expensive (25.000/year)
- Reduces production (increase QoL)
- External opening heals first -> increased risk abscess/ reintervention

				Risk Difference	Risk Difference
Study or Subgroup	Risk Difference	SE	Weight	IV, Random, 95% CI Ye	ear IV, Random, 95% Cl
Present 1999	0.4194	0.1078	25.0%	0.42 [0.21, 0.63] 19	999
Hanauer 2006	-0.1667	0.164	19.4%	-0.17 [-0.49, 0.15] 20	002
Colombel 2007	0.1723	0.0873	27.1%	0.17 [0.00, 0.34] 20	007
Sandborn 2007	-0.03	0.0729	28.5%	-0.03 [-0.17, 0.11] 20	007
Total (95% CI)			100.0%	0.11 [-0.11, 0.33]	•
Heterogeneity: Tau² = 0.04; Chi² = 15.27, df = 3 (P = 0.002); l² = 80%					
Test for overall effect: Z = 0.97 (P = 0.33)			Placebo Anti-TNF therapy		

Complete fistula closure

- Placebo: 13/109 (12%)
- anti-TNF: 32/109 (29%)
- 44% re-interventions

Treatment Crohn's perianal fistula

	Brea	ıkdown etiology			Success rates (%)		
Author	Cryptoglandular	Crohn	Unknown	Overall	Cryptoglandular	Crohn	
Oh⁵	15	х		86.7	86.7	х	
Aguilar et al ⁷	189	Х		98.5	98.5	Х	
Jones et al ⁸	6	6		66.7	100.0	33.3	
Wedell et al ⁹	27	х		96.7	96.7	х	
Shemesh et al ¹⁰	4	4		87.5	← 87.5	\rightarrow	
Lewis and Bartolo ¹¹	2	6		75.0	50.0	83.3	
Kodner et al ¹²			36	80.0	(87.1)	(70.8)	
Makowiec et al ¹³	Х	20		75.0	х	75.0	
Lewis et al ¹⁴	11	х		90.9	90.9	х	
Ozuner et al ¹⁵			46	69.8	(74.1)	(68.1)	
Golub et al ¹⁶	164	х		96.7	96.7	Х	
Joo et al ¹⁷	Х	8		73.1	х	73.1	
Kreis et al ¹⁸			6	62.5	(75.0)	(56.3)	
Marchesa et al ¹⁹	Х	9		61.5	x	61.5	
Miller and Finan ²⁰	18	X		83.3	83.3	X	
Hyman ²¹	6	14		75.0	83.3	71.4	
Schouten et al ²²	44	X		75.0	75.0	X	
Ortiz and Marzo ²³	103	x		93.0	93.0	X	
Mizrahi et al ²⁴	100		53	57.0	(66.7)	(42.9)	
Sonoda et al ²⁵			62	75.8	(77.1)	(50.0)	
Zimmerman et al ²⁶	105	х	ŬL.	69.0	69.0	X	
Dixon et al ²⁷	29	x		69.0	69.0	x	
Koehler et al ²⁸	42	x		73.8	0510	~	
Van der Hagen et al ²⁹	73	7		76.7 R	esults Crohn	's fistul	а
Ellis and Clark ³⁰	35	×		62.9		i 5 listui	u
Gustafsson and Graf ³¹	82	x		57.0	Initial cure		0//170/
Perez et al 32	27	x		92.6	IIIItial Suc	cess. or	ͻʹʹ៰ͺϫϫʹͽ
Van der Hagen et al ³³	20	12		36.6	P		
Uribe et al ³⁴	51	5		92.0	Kecurrend	ce rate:	50%
7bar at al ³⁵	11	> V		92.9			
2001 et al 36	97	Ŷ		66.7			
$\frac{1}{37}$	67 E <i>4</i>	~		75.0			
Dubsky et al	54	~		/5.9	Polintony	ontion r	-10.500
Van Konoron et al ³⁹	90	~		02.4			ate. 50/
Appendent al	80	Ā	25	/ 3.8	. 76 0		
Abbas et al			25	76.0	← /6.0	\rightarrow	
	0.0.1.2014			76.2	78.1	67.5	
ni et al. Dis Colon	& Rect 2011			79.2	80.8	64.0	IRN

AMC

Current treatment: up to discretion of treating physician

Hypothesis:

- All treatment interventions comparable closure rates
- Seton less re-interventions and most cost-effective

Group I	Group II	Group III
Seton for 1 yr	Anti-TNF for 1 yr	Surgical closure
		anti-TNF for 4 mnths

Primary endpoint:

• Re-interventions

Secondary endpoints:

- Closed fistulas (based on MRI)
- Perianal disease activity (PDAI)
- Quality of life
- Costs

Sample size re-intervention50%anti-TNFsurg. closure20%seton

42 patients per group (total n=126)

In- and exclusion criteria

Inclusion

- Age ≥ 18 year
- Crohn's disease
- New or reactive fistula
- High fistula (>2/3 externe sfincter)
- 1 internal opening (MRI)

Exclusion

- Proctitis or anorectale stenosis
- Submucosal, low intersfincteric fistulas or rectovaginal fistulas
- Seton in situ > 3 months
- Anti-TNF use during past 3 months or prior anti-TNF use without any effect on fistula (failure)
- Patients with stomy

The work of many of the greatest men, inspired by duty, has been done amidst suffering and trial and difficulty. They have struggled against the tide, and reached the shore exhausted.

(Samuel Smiles)

izquotes.com

PISA

Jan 2014 – Nov 2018:

• 44 inclusions (slow inclusion rate!)

DSMB: interim analysis (AE = re-intervention)

Arm	Re-interventions, n (%)	
Seton (n=15)	7/15 (47%)	
Anti-TNF (n=15)	1/15 (7%)	Re-interventions Significantly higher in
Surgery (n=14)	2/14 (14%)	seton-arm <i>p=0.046</i>
Total	10/44 (24%)	

Arm	Cross-over (without reintervention)
Seton (n=15)	6/15 (40%)
Anti-TNF (n=15)	0
Surgery (n=14)	0

Secondary outcome parameter: PDAI [scale 25 points]

- Seton 20 → 15
- Anti-TNF $21 \rightarrow 11$
- Surgical closure $21 \rightarrow 9$

PDAI Significantly higher in seton group

am C

Recommendations

• Safety: stop randomisation seton-arm

• Futility: Incidence re-intervention in remaining two arms too low to reveal significant differences

 \rightarrow clinically relevant primary outcome parameter?

RCT vs patient and doctor's preference

am	C

	RCT (n=44)	Patient preference	Doctor's preference
		(n=47)	(n=35)
Age (mean (SD))	33 (10)	39 (11)	33 (21)
Gender (M:F)	16:28	18:29	18:17
Previous anti-TNF use	13 (28%)	14 (30%)	27 (77%)
Disease duration	7 (9)	6 (14)	7 (10)
No previous interventions	0.7 (0.4)	1.0 (0.3)	2.2 (0.3)
PDAI (total 42 points)	21 (5)	22 (6)	21 (5)
No of external openings	1.3 (0.6)	1.2 (0.4)	2.5 (0.5)

	Seton	Anti-TNF	Surgery
Reinterventions			
RCT	7/15	1/15	2/14
Patient preference	4/16 (25%)	7/21 (33%)	1/10 (10%)
Cross-overs			
RCT	6		0
Patient preference	1		1

am C

RCT best design for trials comparing medication to surgery?

- Randomisation bias: low inclusion rate
- Preference bias: influencing subjective outcomes

Re-intervention objective outcome parameter?

• Compromising external and internal validity

Comprehensive cohort design

Systematic review, Wasmann et al., submitted

an

Figure 2. Net Effect Sizes for Preference vs Randomization Comparisons, by Study and Intervention Group

Study, y	Intervention	Favors Randomization Group	Favors Preference Group
Reddihough et al, ³⁶ 1998	Experimental		
	Control	•	
Bakker et al, ¹⁰ 1999	Experimental		-
McKay et al, ²⁸ 1995	Experimental		
	Control		•
McKay et al, ²⁹ 1998	Experimental	•	
	Control	•	
Bedi et al, ¹¹ 2000	Experimental		•
	Control		•
King et al, ²⁵ 2000	Experimental		
	Control	•	
Henshaw et al, ¹⁶ 1993	Experimental		-
	Control	•	
Kitchener et al, ⁴⁶ 2004	Experimental	•	
Kerry et al, ²¹ 2000	Experimental		
	Control		
Jensen et al, ¹⁹ 2003*	Experimental		•
	Control		•
Net Effect Size	7	-08 -06 -04 -02 (02 04 06 08
Experimental Contro	l I	Net Effect Size (Outo	orme Minus Baseline)
	_		

Systematic review:

- Baseline characteristics
 usually comparable
- Allocating patients to treatments that do not accord with their preferences influences internal and external validity of RCTs

DSMB recommendation:

- Continue as a two-armed trial [anti-TNF & surgical closure]
- Choose more relevant primary outcome parameter

P426 Meta-analysis of endorectal advancement flap vs. ligation of the intersphincteric fistula tract for Crohn's and cryptoglandular high perianal fistulas

January 2018 · Journal of Crohn s and Colitis 12(supplement_1):S320-S320 DOI · 10.1093/ecco-jcc/jjx180.553

🍥 Merle Stellingwerf · E M van Praag · 🔘 Willem A Bemelman · 🔘 Christianne J Buskens

Efficacy of Medical Therapies for Fistulizing Crohn's Disease: Systematic Review and Meta-Analysis

MJ Lee et al. Clin Gastroenterol Hepatol. 2018 Jan 25. more

Surgical closure 60-70% closure rate

Anti-TNF 40% remission

Design:

• Comprehensive cohort design

Hypothesis:

• Surgical closure most successful

Sample size

Fistula closure 50% surg. closure 25% anti-TNF

70 patients per group (total n=140)

Primary endpoint:

• Fistula closure after 18 months (MRI based)

• Every trial gives new and unexpected insights!

• RCT not optimal design for trials comparing surgery to medical treatment [in case of subjective outcome parameter]?

• Chronic seton drainage inferior for Crohn's fistulas [acceptable if patient prefers]

• Results of PISA II should be awaited....

Thank you, PISA collaboration group

